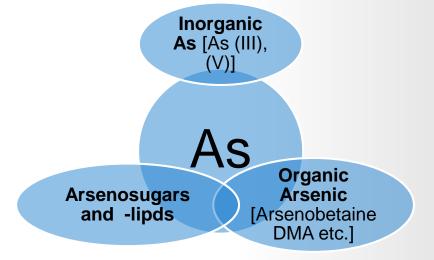
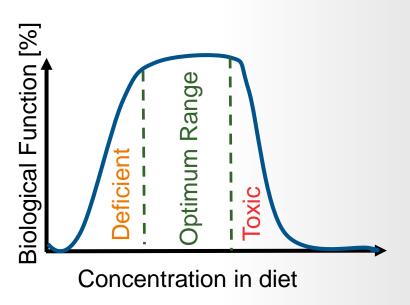


Thermo Fisher S C | E N T | F | C


Improve Data Quality in Environmental Laboratories Using Triple Quadrupole ICP-MS Technology

Maura Rury, Regional Marketing Manager NEMC 2017

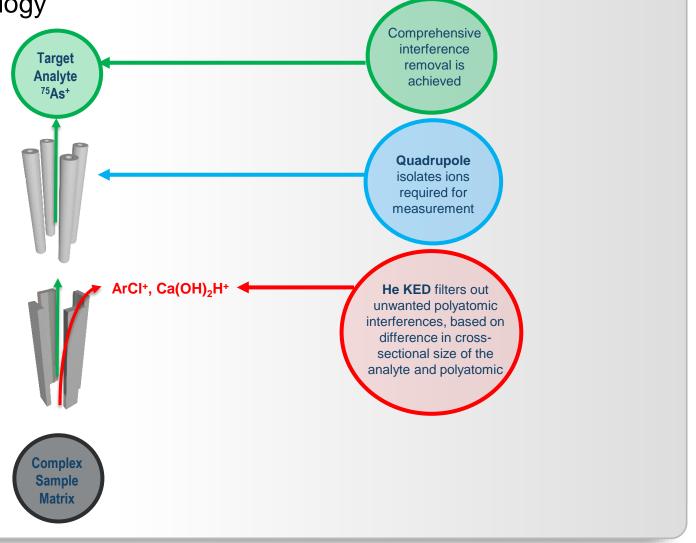
Another Application Challenge for Single Quadrupole ICP-MS


As and Se in Environmental Samples

- The role of the As and Se in the environment
- Arsenic: A potential hazard in the food chain

- Many different chemical forms are known and they differ in toxicity and bioavailability
- Plants such as rice are well known for high accumulation of As from soils

Selenium: An essential nutrient

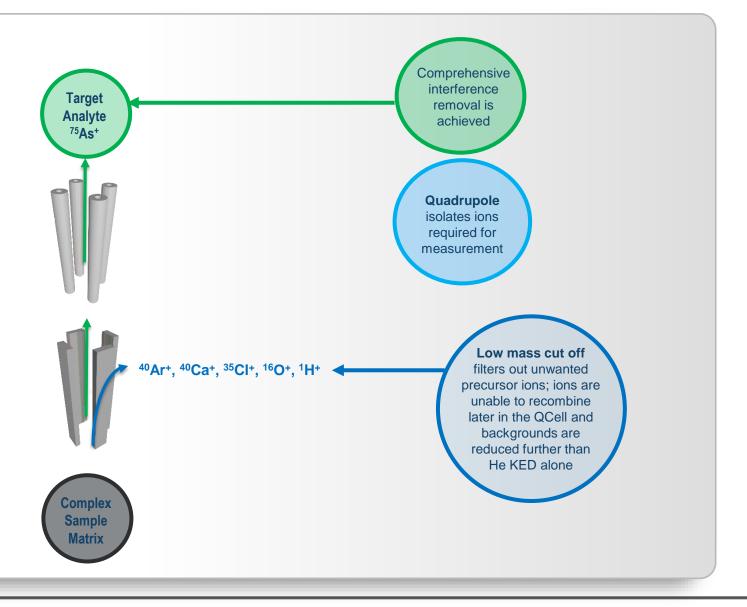

 Knowledge of Se content in soil may prevent Se deficiency in both human and animal populations

Handling Interferences with Collision Reaction Cell Technology

- Thermo Scientific™ iCAP™ QCell Technology
- He Kinetic Energy Discrimination (KED)

Analyte	LMCO	Interferences	Precursors
51 V	35	³⁵ Cl ¹⁶ O, ³⁷ Cl ¹⁴ N, ³⁴ S ¹⁶ OH	H, N, O, S, CI
⁵⁶ Fe	39	⁴⁰ Ar ¹⁶ O, ⁴⁰ Ca ¹⁶ O	O, Ar, Ca
⁶³ Cu	45	⁴⁰ Ar ²³ Na, ¹² C ¹⁶ O ³⁵ CI, ³¹ P ³² S	C, N, O, Na, P, S, CI, Ar
⁷⁵ As	47	⁴⁰ Ar ³⁵ CI, ⁴⁰ Ca ³⁵ CI, ⁴⁰ Ar ³⁴ SH, ³⁷ CI ₂ H	H, S, CI, Ca, Ar

- Quadrupole filters out exact mass of target analyte
- Qcell (collision mode) uses pure He to alter kinetic energy



Handling Interferences with Collision Reaction Cell Technology

...and Low Mass Cut Off

Analyte	LMCO	Interferences	Precursors
51 V	35	³⁵ Cl ¹⁶ O, ³⁷ Cl ¹⁴ N, ³⁴ S ¹⁶ OH	H, N, O, S, CI
⁵⁶ Fe	39	⁴⁰ Ar ¹⁶ O, ⁴⁰ Ca ¹⁶ O	O, Ar, Ca
⁶³ Cu	45	⁴⁰ Ar ²³ Na, ¹² C ¹⁶ O ³⁵ CI, ³¹ P ³² S	C, N, O, Na, P, S, Cl, Ar
⁷⁵ As	47	⁴⁰ Ar ³⁵ Cl, ⁴⁰ Ca ³⁵ Cl, ⁴⁰ Ar ³⁴ SH, ³⁷ Cl ₂ H	H, S, CI, Ca, Ar

- Quadrupole filters out exact mass of target analyte
- Qcell (collision mode) uses pure He to alter kinetic energy

Analysis of As and Se by Single Quadrupole ICP-MS

- Determination of trace elements in drinking water, compliant with EPA 200.8 requirements
- Trace contaminants can be quantified in wastewaters and surface waters
- Robust interface to handle samples with high TDS matrices – determination of trace elements in seawater, 25% NaCl
- All analyses can be performed using singlemode analysis – He KED

But what if the environmental samples have Rare Earth Elements present in the matrix?

 Ar₂ and ArCl interferences are easily removed using He KED mode analysis

But if REE are present....

Single Quad ICP-MS: KED

Typically enhances M²⁺ Interferences

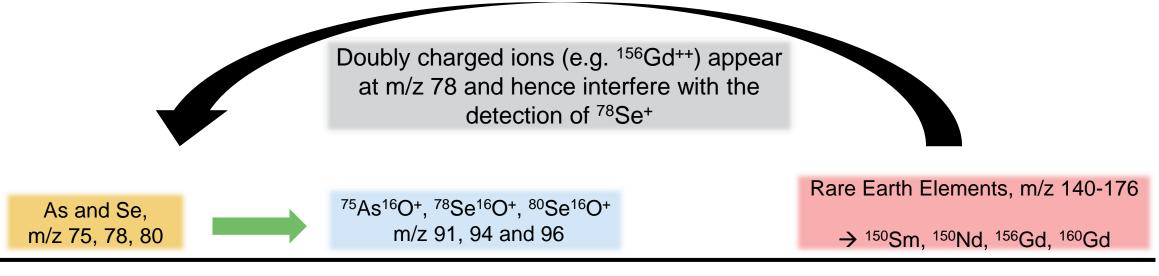
Doubly charged ions (e.g. ¹⁵⁶Gd⁺⁺) appear at m/z 78 and hence interfere with the detection of ⁷⁸Se⁺

As and Se, m/z 75, 78, 80

Rare Earth Elements, m/z 140-176

→ ¹⁵⁰Sm, ¹⁵⁰Nd, ¹⁵⁶Gd, ¹⁶⁰Gd

m/z


- Ar₂ and ArCl interferences are easily removed using He KED mode analysis
- But if REE are present....

Single Quad ICP-MS: KED

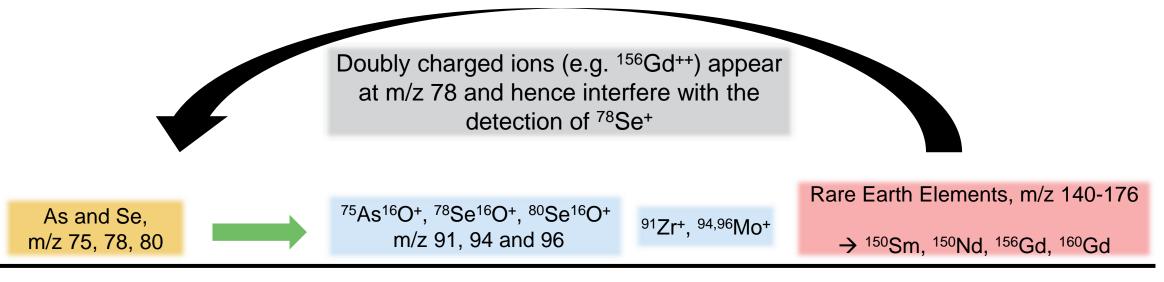
Typically enhances M²⁺ Interferences

Solution:

Mass shift As and Se using O₂

m/z

- Ar₂ and ArCl interferences are easily removed using He KED mode analysis
- But if REE are present....

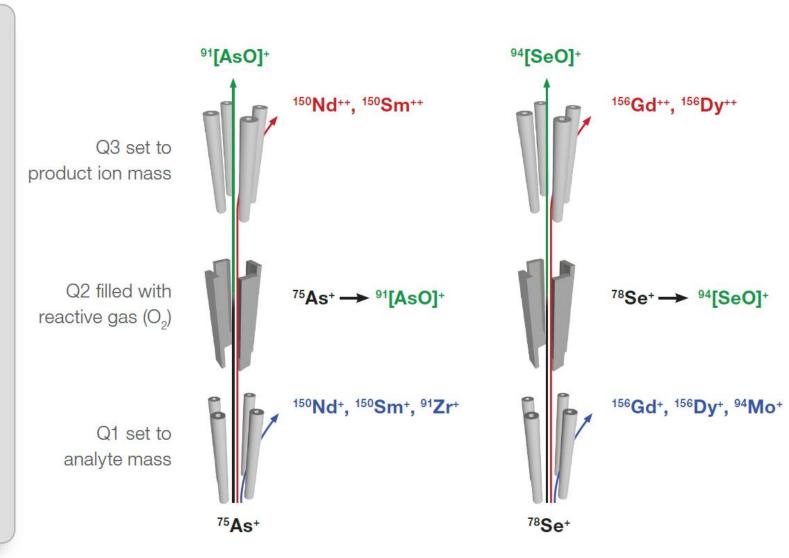

Single Quad ICP-MS: KED

Typically enhances M²⁺ Interferences

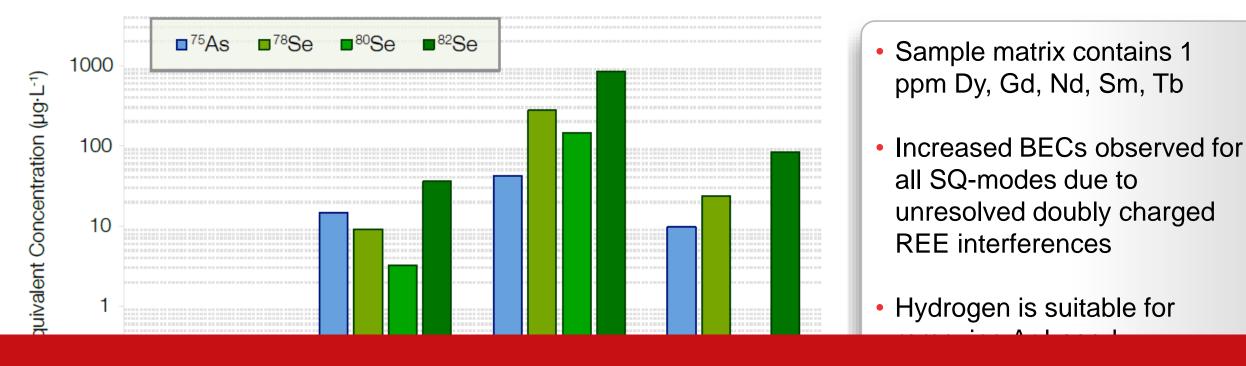
Solution:

Mass shift As and Se using O₂

Other interferences: 91Zr+, 94,96Mo+, if present in the sample

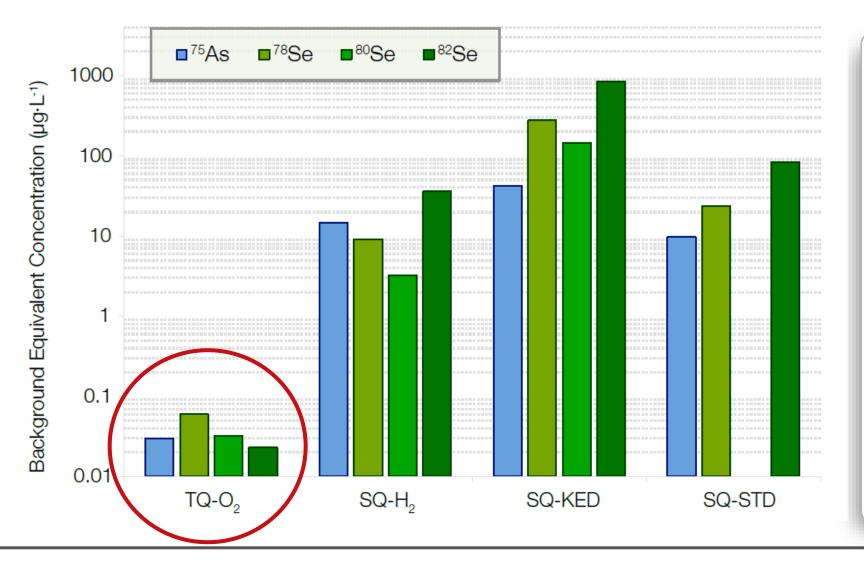

m/z

• Q1


 Control ions entering the collision/ reaction cell and the remainder of the spectrometer

• Q2

- Use O₂ to efficiently convert As and Se to AsO and SeO
- Reactions are selective the REE++ ions do not react
- Q3
 - Selectively detect AsO and SeO, free from REE++ interferences



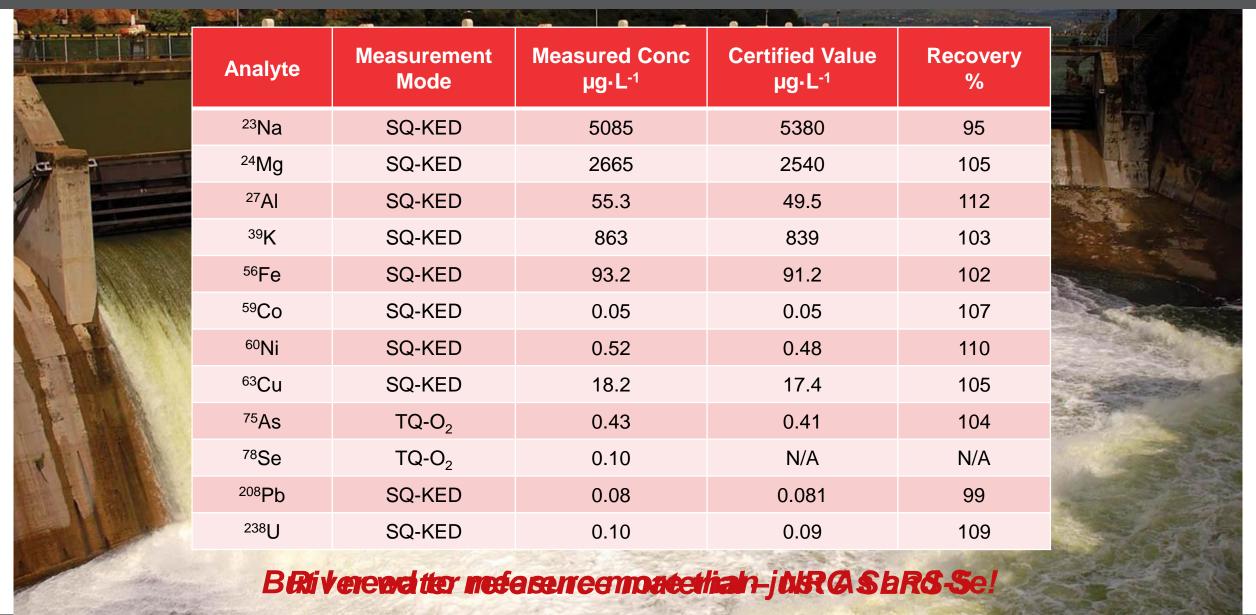
Are you SURE a triple quadrupole is the best approach for this application?

Reaction with oxygen in TQ mode dramatically lowers BEC concentrations for both As and Se

Are you SURE a triple quadrupole is the best approach for this application?

- Sensitivity:
 - As: 3953 cps/ppb
 - ⁷⁸Se: 4443 cps/ppb
- BEC:
 - As = 30 ppt
 - 78 Se = 3 ppt
- IDL:
 - As = 0.17 ppt
 - 78 Se = 2.0 ppt

What about the accuracy?


Results for Certified Reference Sample

AGV-1	Content in original sample (µg⋅g-¹)	Certified content (μg⋅g ⁻¹)
⁷⁵ As	0.892	0.88
⁷⁸ Se	< LOQ	-
Deep Sea Sediment		
⁷⁵ As	1.303	-
⁷⁸ Se	0.109	-

Spike recovery results in samples (1 ppb As and Se)

Analyte	AGV-1	Sediment
Arsenic	94.6 %	97.6 %
Selenium	93.4 %	97.6 %

Analysis of Routine Environmental Samples

Analysis of Routine Environmental Samples - CRM 1643F

Analyte	Measurement Mode	Measured Conc μg⋅L ⁻¹	Certified Value μg·L ⁻¹	Recovery %
51 V	TQ-O ₂	36.03	36.07 ± 0.28	100
⁵² Cr	TQ-O ₂	18.06	18.50 ± 0.10	98
⁵⁵ Mn	SQ-KED	39.50	37.14 ± 0.60	106
⁵⁷ Fe	SQ-KED	106.11	93.44 ± 0.78	114
⁵⁸ Ni	SQ-KED	55.97	59.8 ± 1.4	94
⁵⁹ Co	TQ-O ₂	24.22	25.30 ± 0.17	96
⁶³ Cu	SQ-KED	21.32	21.66 ± 0.71	98
⁶⁶ Zn	TQ-O ₂	87.78	74.4 ± 1.7	118
⁷⁵ As	TQ-O ₂	57.10	57.42 ± 0.38	99
⁸⁰ Se	TQ-O ₂	11.97	11.70 ± 0.081	102
⁹⁸ Mo	TQ-O ₂	123.8	115.3 ± 1.7	107
¹⁰⁷ Ag	SQ-KED	0.94	0.97 ± 0.0055	97
¹¹¹ Cd	SQ-KED	5.91	5.89 ± 0.13	100
¹²¹ Sb	SQ-KED	54.59	55.45 ± 0.40	98
¹²⁵ Te	SQ-KED	0.95	0.977 ± 0.0084	97
²⁰⁵ TI	SQ-KED	6.38	6.892 ± 0.035	93
²⁰⁸ Pb	SQ-KED	18.19	18.488 ± 0.084	98

Analysis of Routine Environmental Samples – Seawater Reference NRC CASS-5

Analyte	Measurement Mode	Measured Conc μg·L ⁻¹	Certified Value µg·L ⁻¹	Recovery %
51 V	TQ-O ₂	1.37	1.32 ± 0.14	104
⁵² Cr	TQ-O ₂	0.069	0.106 ± 0.013	65
⁵⁵ Mn	SQ-KED	2.56	2.62 ± 0.20	98
⁵⁷ Fe	TQ-O ₂	1.49	1.44 ± 0.11	103
⁶³ Cu	SQ-KED	0.378	0.380 ± 0.028	99
⁷⁵ As	TQ-O ₂	1.17	1.24 ± 0.09	94
⁹⁸ Mo	TQ-O ₂	10.80	9.82 ± 0.72	110
¹¹¹ Cd	SQ-KED	0.0227	0.0215 ± 0.0018	106

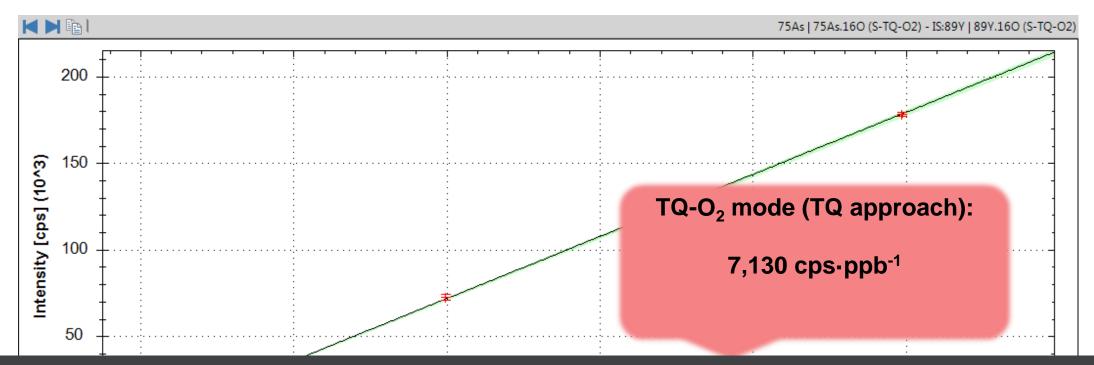
The Advantage of Triple Quadrupole Technology


- Single Quadrupole: KED
 - Removes polyatomic interferences

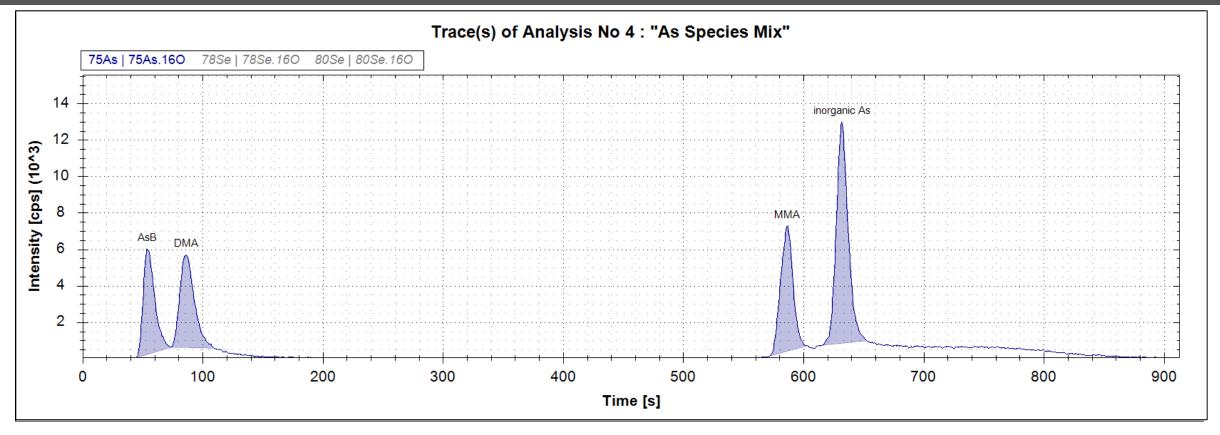
- Triple Quadrupole: TQ-O₂
 - More specific interference removal

The Advantage of Triple Quadrupole Technology

- Single Quadrupole: KED
 - Removes polyatomic interferences


- Triple Quadrupole: TQ-O₂
 - More specific interference removal

The Advantage of Triple Quadrupole Technology

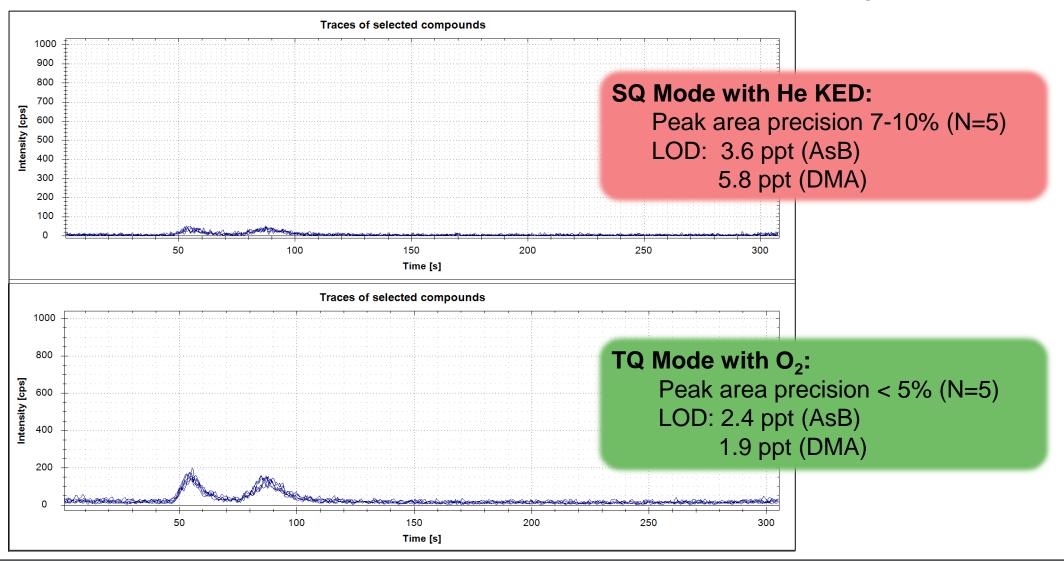

- Single Quadrupole: KED
 - Removes polyatomic interferences

- Triple Quadrupole: TQ-O₂
 - More specific interference removal

Use of O₂ as a reactive gas improves detection sensitivity for ⁷⁵As in comparison to KED

The Advantage of Triple Quadrupole Technology – As Speciation

iCAP TQ ICP-MS


Parameter	Value	
Mode	TQ-O ₂	
Gas Flow	100% O₂ @ 0.4 mL·min ⁻¹	
Cell Settings	QCell Bias	Quad Bias
	-7.5 V	-12 V

Ultimate 3000 HPLC System

Parameter	Value
Column	Thermo Scientific Dionex AS7, 2x250mm
Mobile Phase	Ultra pure water, 20mM (NH ₄) ₂ CO ₃ ; 200mM 20mM (NH ₄) ₂ CO ₃
Gradient	5-20mM in 7 minutes, 200mM for 3 minutes
Injection Volume	25μL

The Advantage of Triple Quadrupole Technology – As Speciation

Species shown here are AsB and DMA at 20 ng-L⁻¹

The Power of Triple Quadrupole Technology

- Elemental impurities in Ni alloys
- Ti, Cr in high purity sulfuric acid
- As in Vitamin B12 (high Co matrix)
- Cd in the presence of high Mo concentrations
- As, Se in samples containing rare earth elements
- Measure nanoparticles at decreasing diameters
- P, Ti in high Si matrix
- Ti in human serum
- As, Cr, V in high purity hydrochloric acid
- S, P in steel and high concentrations of iron

Find out more: thermofisher.com/iCAPTQ

The possibilities are endless!